Energetics of stalk intermediates in membrane fusion are controlled by lipid composition.
نویسندگان
چکیده
We have used X-ray diffraction on the rhombohedral phospholipid phase to reconstruct stalk structures in different pure lipids and lipid mixtures with unprecedented resolution, enabling a quantitative analysis of geometry, as well as curvature and hydration energies. Electron density isosurfaces are used to study shape and curvature properties of the bent lipid monolayers. We observe that the stalk structure is highly universal in different lipid systems. The associated curvatures change in a subtle, but systematic fashion upon changes in lipid composition. In addition, we have studied the hydration interaction prior to the transition from the lamellar to the stalk phase. The results indicate that facilitating dehydration is the key to promote stalk formation, which becomes favorable at an approximately constant interbilayer separation of 9.0 ± 0.5 Å for the investigated lipid compositions.
منابع مشابه
Expansion of the fusion stalk and its implication for biological membrane fusion.
Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fus...
متن کاملDirect observation of intermediate states in model membrane fusion
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusio...
متن کاملRevisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes
Membrane fusion is a vital process in key cellular events. The fusion capability of a membrane depends on its elastic properties and varies with its lipid composition. It is believed that as the composition varies, the consequent change in C0 (monolayer spontaneous curvature) is the major factor dictating fusion, owing to the associated variation in GEs (elastic energies) of the fusion intermed...
متن کاملControl of Membrane Fusion Mechanism by Lipid Composition: Predictions from Ensemble Molecular Dynamics
Membrane fusion is critical to biological processes such as viral infection, endocrine hormone secretion, and neurotransmission, yet the precise mechanistic details of the fusion process remain unknown. Current experimental and computational model systems approximate the complex physiological membrane environment for fusion using one or a few protein and lipid species. Here, we report results o...
متن کاملA quantitative model for membrane fusion based on low-energy intermediates.
The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as "nipples") toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy to create the initial stalk, caused by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 25 شماره
صفحات -
تاریخ انتشار 2012